Algoritmi e Strutture Dati

Soluzione esercizi di approfondimento

Stefano Leucci stefano.leucci univaq.it

Una terza variante dell'IS

InsertionSort3 (A)

- 1. **for** k=1 **to** n-1 **do**
- 2. x = A[k+1]
- j = ricerca_binaria(A[1,k],x)j è la posizione in cui andrà inserito x
- 4. **for** i=j **to** k **do**
- 5. A[i+1] = A[i]
- 6. A[j]=x

 $r_k \le \log k$ in quanto ci si ferma non appena si trova un elemento pari ad x oppure x non viene trovato

 $s_k \leq k$

spostamenti

il tutto eseguito n-1 volte

$$T(n) = \sum_{k=1}^{n-1} (r_k + s_k) \le \sum_{k=1}^{n-1} (\log k + k) = O(n^2)$$

Una terza variante dell'IS (2)

• Caso peggiore: x andrà inserito in prima posizione, e quindi in tal caso $r_k = log k e s_k = k$, e quindi

$$T_{worst}(n) = \sum_{k} (r_k + s_k) = \sum_{k} (\log k + k) = \Theta(n^2)$$

• Caso migliore: si ha quando minimizzo r_k + s_k e quindi, intuitivamente, x andrà inserito "vicino" alla posizione k-esima. Quindi, la ricerca binaria deve spostarsi sempre verso destra. Ma se la ricerca binaria termina dopo t iterazioni, allora r_k + s_k = t+k/2^t, e questa funzione è monotona descrescente, e quindi raggiunge il suo minimo per t=log k (cioè proprio quando x è maggiore di tutti gli elementi della sequenza). In tal caso:

$$T_{best}(n) = \sum_{best} (r_k + s_k) = \sum_{best} \log k \le \log n! \le \log n^n = n \log n,$$
 cioè $T_{best}(n) = O(n \log n)$, ma come vedremo con l'approssimazione di Stirling, $\log n! = \Omega(n \log n)$, cioè $T_{best}(n) = \Omega(n \log n)$, e quindi $T_{best}(n) = \Theta(n \log n)$

Una terza variante dell'IS (3)

Caso medio: la posizione attesa di x sarà quella mediana della sequenza, e quindi $r_k = O(\log k)$ e $s_k = k/2$, da cui

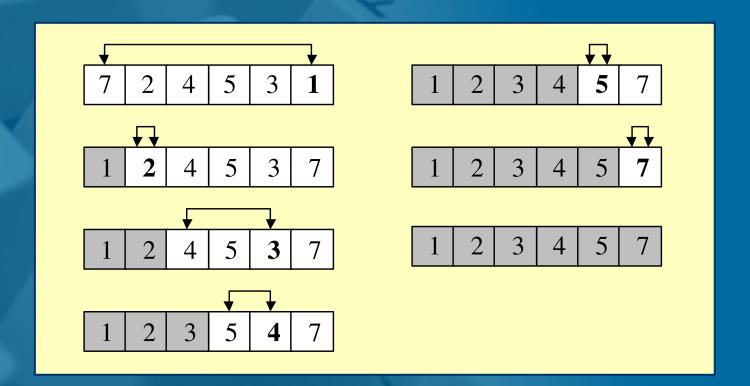
$$T_{avg}(n) = \sum (r_k + s_k) = \sum (\log k + k/2) = \Theta(n^2)$$

• Quindi, ricapitolando, InsertionSort3 è meglio di InsertionSort1 ma peggio di InsertionSort2.

	Caso migliore	Caso medio	Caso peggiore	T(n)	S(n)
Insertion Sort 1	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$
Insertion Sort 2	Θ(n)	$\Theta(n^2)$	$\Theta(n^2)$	O(n ²)	Θ(n)
Insertion Sort 3	Θ(n log n)	$\Theta(n^2)$	$\Theta(n^2)$	O(n ²)	$\Theta(n)$

SelectionSort

Approccio incrementale: assumendo che i primi k-1 elementi siano ordinati e siano i k-1 elementi più piccoli della sequenza, estende l'ordinamento ai primi k elementi scegliendo il minimo degli elementi non ancora ordinati in posizione k, k+1,..., n, e mettendolo in posizione k



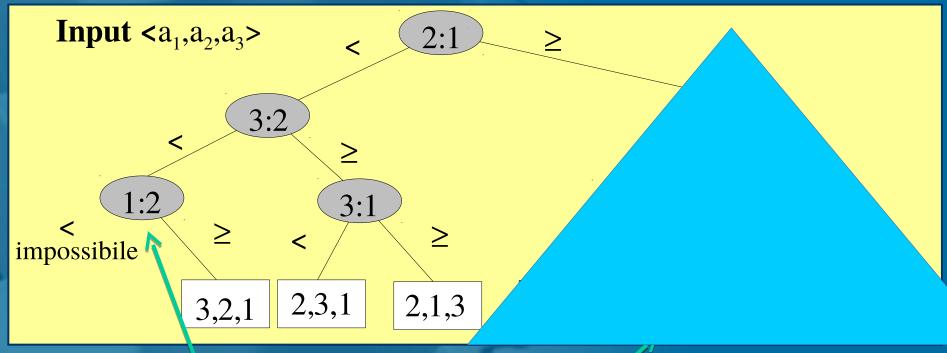
SelectionSort (A)

- 1. **for** k=1 **to** n-1 **do**
- 2. m = k
- 3. **for** j=k+1 **to** n **do**
- 4. **if** (A[j] < A[m]) **then** m=j
- 5. scambia A[m] con A[k]

NOTA: Assumiamo che il primo elemento dell'array sia in A[1]

- Linea 1: k mantiene l'indice dove andrà spostato il minimo degli elementi in posizione k, k+1, ..., n.
- Linea 2: m mantiene l'indice dell'array in cui si trova il minimo corrente
- Linee 3-4: ricerca del minimo fra gli elementi A[k],...,A[n] (m viene aggiornato con l'indice dell'array in cui si trova il minimo corrente)
- Linea 5: il minimo è spostato in posizione k (si noti che questa operazione richiede 3 operazioni elementari di assegnamento)

Albero di decisione del SS



- Osservazione 1: l'albero non è strettamente binario: compare un confronto inutile!
- Osservazione 2: tutte le foglie sono alla stessa altezza (e infatti il SS esegue sempre lo stesso numero di confronti!)
- Osservazione 3: la permutazione <3,2,1> è raggiungibile solo nel caso in cui $a_1=a_2$

Merge alternativo di 2 heap d-ari

Fornire un'implementazione alternativa dell'operazione di merge(heap d-ario c1, heap d-ario c2) in cui gli elementi di uno dei due heap vengono aggiunti sequenzialmente all'altro heap. Analizzarne quindi la convenienza asintotica rispetto all'implementazione classica di costo $\Theta(n)$.

Soluzione: Sia $k=min\{|c_1|,|c_2|\}$. Inseriamo ad uno ad uno tutti gli elementi della coda più piccola nella coda più grande; questo costa $O(k \log n)$, dove $n=|c_1|+|c_2|$. L'approccio conviene quindi per $k \log n=o(n)$, cioè per $k=o(n/\log n)$.

Code con Priorità: Riepilogo delle operazioni elementari

	FindMin	Insert	Delete	DeleteMin
Array non ord.	Θ(n)	O(1)	O(1)	Θ(n)
Array ordinato	O(1)	O(n)	O(n)	O(1)
Lista non ordinata	Θ(n)	O(1)	O(1)	Θ(n)
Lista ordinata	O(1)	O(n)	O(1)	O(1)

Esercizio di approfondimento #2

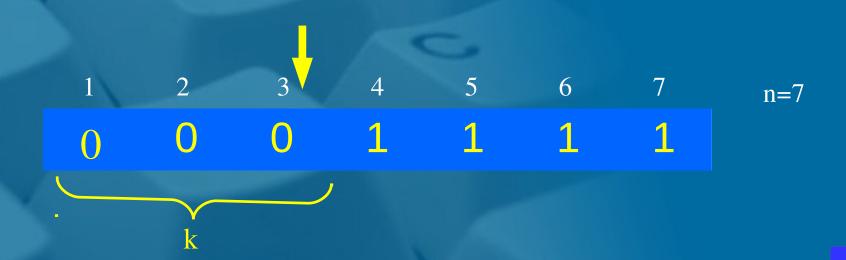
Valutare i costi delle operazioni aggiuntive (IncreaseKey, DecreaseKey e Merge) sulle implementazioni elementari (vettori e liste).

Soluzione esercizio di approfondimento #2

	Increase	Decrease	Merge
	Key	Key	
Array	O(1)	O(1)	Θ(k)
non ord.			$k=\min\{ c_1 , c_2 \}$
Array	O(n)	O(n)	$\Theta(n)$
Ordinato			$n= c_1 + c_2 $
Lista non	O(1)	O(1)	O(1)
Ordinata			
Lista	O(n)	O(n)	O(n)
Ordinata		A	

Dato un vettore ordinato di n elementi binari, trovare:

- → l'ultimo 0 in tempo o(n)
- l'ultimo 0 in tempo O(log k) dove k è il numero complessivo di 0 nel vettore.



Dato un vettore A ordinato di n interi positivi ed un intero x, trovare (se esistono) due indici i,j con i<j tali che: A[i]+A[j]=x.

Tempo: $o(n^2)$. Sugg: si può fare in $O(n \log n)$ e O(n)

Si consideri una tavoletta di cioccolata rettangolare composta da n file di m quadratini di cioccolata. Si vuole effettuare una serie di spezzate in modo da avere tutti i quadratini di cioccolata separati.

Ogni spezzata consiste nel prendere un pezzo di cioccolata (di qualsiasi forma) e separarlo in due pezzi di cioccolata (di qualsiasi forma).

Una strategia è quella di separare prima le n file e poi, per ogni fila, separare i quadratini ad uno ad uno. Questa strategia esegue (n-1)+n(m-1)=nm-1 spezzate.

Esiste una strategia migliore? (Perché?)

m

Dato un vettore A[1:n] di interi (non necessariamente ordinato), individuare l'indice $1 \le i \le n$ di un "picco", cioè di un elemento A[i] tale che A[i] \ge [Ai+1] ed A[i] \ge A[i-1]. (si pensi A[0]=A[n+1]=- ∞).

Dato un vettore (potenzialmente non ordinato) con elementi interi distinti, si definisce inversione una coppia di elementi A[i], A[j] con i<j tale che A[i]>[j]. Progettare un algoritmo efficiente che calcola il numero di inversioni.

Tempo: $o(n^2)$

 1
 2
 3
 4
 5
 6
 7

 4
 7
 12
 8
 9
 13
 2
 n=7

Numero inversioni = 8